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Breast cancer development is associated with increasing tissue stiff-
ness over years. To more accurately mimic the onset of gradual matrix
stiffening, which is not feasible with conventional static hydrogels,
mammary epithelial cells (MECs) were cultured on methacrylated
hyaluronic acid hydrogels whose stiffness can be dynamically modu-
lated from “normal” (<150 Pascals) to “malignant” (>3,000 Pascals) via
two-stage polymerization. MECs form and remain as spheroids, but
begin to lose epithelial characteristics and gainmesenchymalmorphol-
ogy upon matrix stiffening. However, both the degree of matrix stiff-
ening and culture time before stiffening play important roles in
regulating this conversion as, in both cases, a subset of mammary
spheroids remained insensitive to local matrix stiffness. This conver-
sion depended neither on colony size nor cell density, and MECs did
not exhibit “memory” of prior niche when serially cultured through
cycles of compliant and stiff matrices. Instead, the transcription factor
Twist1, transforming growth factor β (TGFβ), and YAP activation
appeared to modulate stiffness-mediated signaling; when stiffness-
mediated signals were blocked, collective MEC phenotypes were re-
duced in favor of single MECs migrating away from spheroids. These
data indicate a more complex interplay of time-dependent stiffness
signaling, spheroid structure, and soluble cues that regulates MEC
plasticity than suggested by previous models.
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Tissue remodeling results in part from mechanical, structural,
and compositional changes to the extracellular matrix (ECM)—

the scaffold that surrounds and separates cells. Significant focus
over the last decade has illustrated how one such property—ECM
stiffness—effects a range of cell behaviors from migration (1) to
alignment and morphology (2–4) to differentiation (5–7). However,
the remodeling that induces these changes can occur for a number
of reasons: For mammary cancers, tumors “feel” stiffer during
manual palpation (8) in part from increased ECM expression and
cross-linking (9, 10) as well as changes in protein composition (11,
12). This dynamic tumor microenvironment is established by tumor
and stromal cells and their soluble factors (13–15), which evolve as
the tumor progresses over months to years (8). Animal models
largely recapitulate the dynamics of human tumors, e.g., stiffening
by lysyl oxidase-mediated cross-linking (9), but they remain ex-
ceedingly complex. Reductionist approaches using biological and
synthetic materials have only recently been available to systemati-
cally modulate physical properties over a pathologically relevant
range. These materials re-create the classic mesenchymal trans-
formation of mammary epithelial cells (MECs) via changes in
stromal stiffness (16, 17). However, these materials, especially
synthetic ones, often cannot be remodeled by cells in vitro and
remain static with time, unlike highly dynamic mammary tissue that
undergoes a 10- to 20-fold stiffening during tumor progression (16).

Recent material advances have created dynamic or “on-
demand” systems where cross-linking is temporally regulated to
achieve continuous or step-wise cross-linking or degradation that
more closely resembles in vivo tissue dynamics. Systems often
rely on thermal-activated or photo-activated, pH, enzymatic, or
diffusion-based mechanisms (18); for example, gold nanorod-
carrying liposomes can be heated past their transition tempera-
ture to induce rupture and, when loaded with calcium, form
additional alginate cross-links (19). Large thermal changes may
be detrimental to cells, so light, which can be precisely controlled
over space and time, serves as an alternative. Both UV light
(UV) activated cross-linking via radical polymerization (20, 21)
or degradation via o-nitro benzyl groups (22) have been used to
modulate cell behavior, finding that stem cells can dynamically
modulate their lineage initially (21) but commit after long-term
culture (5, 23). Similar memory may exist in cancer cells (24),
prompting the question of whether MECs, which form hollow
3D structures called acini in vivo, exhibit single or collective cell
behavior when cultured in dynamically stiffening materials.
These systems also better mimic how the microenvironment is
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modified over time with tumors versus static materials, enabling
us to additionally determine when and to what extent mammary
spheroids, i.e., precursors to acini, are sensitive to ECM stiffness.

Results
Methacrylated Hyaluronic Acid Hydrogels Recapitulate Mammary
Morphogenesis. Dynamic changes in matrix stiffness—not just
stiffness itself (16)—may play a pivotal role in regulating epithelial
to mesenchymal transition (EMT), a process where MECs adopt a
more mesenchymal-like phenotype punctuated by expression of
canonical mesenchymal transcription factors including Twist1 (25).
To examine the collective responses of 3D mammary spheroids to
stiffening, we adopted a material-based strategy where the meth-
acrylated glycosaminoglycan hyaluronic acid (MeHA) would be
partially cross-linked, cells seeded on its collagen-functionalized
surface, and Matrigel overlaid on top (SI Appendix, Fig. S1 A–D),
consistent with previous methods that used static polyacrylamide
(PA) (16). MeHA has a stiffness range that spans normal to
pathologically stiff (Fig. 1A) and could be modulated by the
methacrylation substitution ratio, free radical donor concentration,
and UV exposure time (26); moreover, its mechanics are pre-
dominantly elastic rather than viscous (SI Appendix, Fig. S1E).
Collagen can be covalently attached to MeHA (Fig. 1B) to a degree
similar to PA hydrogels as assessed by how tethered the matrix
protein is to the substrate (27). Initial MEC attachment did not
vary as a function of stiffness or substrate (Fig. 1C) and MeHA,

stiffened only to initially polymerize it, yielded MEC responses
consistent with previous results on PA hydrogels (16); pathologi-
cally stiff cultures induce EMT, whereas physiological compliant
cultures do not (Fig. 1 D and E).

Spheroid EMT Depends on Magnitude and Timing of Substrate
Stiffening. Via static culture, single MECs undergo EMT and
form a layer of mesenchymal cells above 400 Pa or >twofold
above normal ECM stiffness (16). To determine to what extent
MECs are sensitive collectively to ECM stiffness as spheroids,
single cells were cultured on 100-Pa MeHA hydrogels to form
mammary spheroids and then stiffened to varying degrees after
10 d (Fig. 2A). Stiffening up to 3,000 Pa requires the presence of
both a free radical donor and UV (SI Appendix, Fig. S2) up to 2.5
min, which was not sufficient to induce DNA damage pathways,
e.g., p53 activation (SI Appendix, Fig. S3); these data suggest that
MEC responses are stiffness-mediated and not the result of
MeHA polymerization chemistry. After substrates were stiffened
to reach 1,000–5,000 Pa (Fig. 2A), we found that collective MEC
responses were still stiffness-dependent; fewer maintained their
spheroid morphology on 5,000 vs. 1,000 Pa hydrogels, often
exhibiting significant migration away from the original spheroid
(Fig. 2B). However, cell responses were notably heterogeneous
at intermediate stiffness; despite 10-fold change in stiffness, 50%
of spheroids maintained their morphology when MeHA hydro-
gels were stiffened from 100 to 1,000 Pa. Conversely, relatively
few spheroids remained when MeHA was stiffened to patho-
logical stiffness (Fig. 2C). To confirm these results, we addi-
tionally tested the mouse epithelial cell line, Eph4Ras, and found
similar results to human MCF10A cells (SI Appendix, Fig. S4).
Cell responses also appear to be sensitive to any change in matrix
stiffness, whether performed as a single or two-step stiffening.
When stiffened over 2 d, first to the stiffness where single cells
were found to be responsive, e.g., 600 Pa (16, 28), and then to
pathological stiffness, we observed analogous resistance to the
change in stiffness on mammary spheroid morphology (SI Ap-
pendix, Fig. S5). These data suggest that the heterogeneity of
tumor progression may be due in part to different sensitivities of
a collective MEC response to stroma stiffness changes.
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Fig. 1. Tunable MeHA hydrogels have similar properties to PA hydrogels.
(A) MeHA stiffness is plotted for hydrogels that were cross-linked in a two-
stage process (26). Data represent mean ± SD in triplicate (n > 100 mea-
surements per bar). ***P < 10−3 from an unpaired Student t test. (B) Type I
collagen attachment is shown by rupture length of the tether pulled off of
the surface as in Wen et al. (27) to assess protein-hydrogel coupling. No
statistical difference by two-way ANOVA was found between 100 Pa and
3,000 Pa hydrogels fabricated using MeHA or PA as well as MeHA hydrogels
that were stiffened using the two-stage process (n > 100 measurements over
three independent gels per bar). (C) Initial MEC attachment is plotted as a
function of stiffness or substrate. No statistical difference by two-way
ANOVA was found (n = 3 hydrogels containing over 50 cells per bar). (D)
Phase images demonstrating MCF10A cell response on 100 and 3,000 Pa
MeHA substrates. (Scale bar: 200 μm.) (E) Fluorescent images of E-cadherin
(green), Laminin V (red), and nuclei (blue) for both 100 and 3,000 Pa sub-
strates made using either polyacrylamide (PA) or MeHA (16, 17). N.S., not
significant.
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Ondeck et al. PNAS | February 26, 2019 | vol. 116 | no. 9 | 3503

A
PP

LI
ED

BI
O
LO

G
IC
A
L

SC
IE
N
CE

S
EN

G
IN
EE

RI
N
G

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental


www.manaraa.com

To examine the onset of collective stiffness sensitivity, we next
varied MEC culture time before stiffening MeHA substrates to the
same degree (Fig. 3A). With increased culture time on physiological
stiffness, MECs formed spheroids (Fig. 3B, Left) whereas MECs on
pathologically stiff substrates exhibited spreading, and morphologi-
cal changes indicative of EMT-like behavior as early as 2 d in cul-
ture (Fig. 3B, Right). However, when stiffened to 3,000 Pa after a
variable amount of preculture time at 100 Pa, we found that col-
lective MEC responses became heterogeneous after 8–10 d of
preculture; ∼10–20% of spheroids did not respond to stiffening by
exhibiting EMT-like behavior (Fig. 3B, Middle and Fig. 3C), sug-
gesting that after sufficient time in culture, they may have matured
to the point where collective sensing among cells within the
spheroid could override mechanotransductive signals that would
induce EMT for those cells in contact with the MeHA (17). How-
ever, MECs proliferate (11) and acini hollow (29) as they mature, so
the number of cells present in spheroid may regulate their collective
sensing. To produce spheroids of consistent size, MECs were pre-
clustered at different densities using Aggrewell plates. After seeding
overnight on MeHA, hydrogels were stiffened and spheroids cul-
tured for up to 5 d (Fig. 4A). However, the behavior appeared
independent of cell density as it did not affect the propensity of

MECs to respond to stiffness; indeed, responses were primarily
controlled by stiffness. When MeHA was stiffened, we further
observed a decrease in spheroids in favor of MECs undergoing
EMT-like changes (Fig. 4 B–E), although we again observed that
a subset of spheroids is insensitive to stiffening (Fig. 4 B and D,
Middle, arrowheads). Together, these data suggest that collective
MEC responses to stroma stiffness changes are heterogeneous.

Stiffening-Induced EMT Is Not a Cell Autonomous Process but Is
Augmented by Paracrine Signaling. Single MECs have been sug-
gested to have memory of their previous niche (24), and given the
heterogeneous responses of spheroids after stiffening, we next
asked if mammary spheroids would exhibit memory. Mammary
spheroids were cultured on stiffened hydrogels as in Fig. 3 for 10 d
(labeled as 1°), and remaining spheroids were separated from
spread cells using a differential typsinization method (SI Appendix,
Fig. S6). The separated spheroids and spread cell populations were
then reseeded on MeHA substrates that were compliant, stiffened,
or stiff (labeled as 2°) to assess whether response was cell auton-
omous (Fig. 5A). When spheroids were plated onto the secondary
hydrogel without stiffening, cells remained spherical, but when
plated onto stiff substrates, most spheroids exhibited EMT-like
changes (Fig. 5 B and C, green vs. blue). When plated on stiff-
ened 2° hydrogels, nearly all spheroids were maintained until
stiffening, at which point the population became heterogeneous
again (Fig. 5 B and C, red). Conversely, when spread MECs were
plated onto stiff 2° hydrogels, cells remained spread (Fig. 5 D and
E, blue), but for both compliant and stiffened MeHA, MECs
formed spheroids, which became heterogeneous only when MeHA
was stiffened during the 2° screen (Fig. 5D and E, green vs. red). To
more closely assess phenotype resulting from spheroids and spread
cells in the 2° hydrogel, we examined E-cadherin localization and
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sponse. (A) On culture days 2, 4, 6, 8, and 10 on 100 Pa substrates, samples
were stiffened to ∼3,000 Pa. Data represent mean ± SD for polymerization
from first batch of MeHA (n = 6 hydrogels with >100 measurements per bar).
***P < 10−3 from an unpaired Student t test. (B) Representative brightfield
images of MECs cultured on MeHA substrates with variable times for stiff-
ening corresponding to A and indicated by row (middle columns); total
culture time for dynamically stiffened gels are indicated for each row plus
the time indicated by each column. For reference, MECs cultured on sub-
strates with stiffness of 100 Pa (Left) and 3,000 Pa (Right) are shown with
each row corresponding to the indicated culture day. (C) Quantification of
the percent spheroids remaining as a function of the days after stiffening.
Data are sorted by preculture time (n = 2 biological replicates with ≥2 gels
with 80–341 spheroids measured per condition; for 8 d before culture, n = 1
biological replicate with four gels with 70–135 spheroids measured per gel).
****P < 1 × 10−4 for time after stiffening and ***P < 1 × 10−3 for
stiffening day from a two-way ANOVA with *P < 0.05 for Tukey’s post hoc
analysis versus other individual conditions.

P
er

ce
nt

 S
ph

er
oi

d 
R

em
ai

ni
ng

 (%
)

0 1 2 3 4 5
0
20
40
60
80

100

Day 0 Day 3 Day 5

STIFFEN

100 Pa 

3000 Pa 

10
0 

P
a 

10
0-

>3
00

00
 P

a
30

00
 P

a 

S
TI

FF
E

N

A

* *
*

B

250 cell/spheroid

D

0
20
40
60
80

100

Days Post Replating
0 1 2 3 4 5

* * *

200 μm

Day 0 Day 3 Day 5

10
0 

 P
a

10
0-

>3
00

00
 P

a
30

00
 P

a

S
TI

FF
E

N

C

500 cell/spheroid

E

EMT

Aggrewell Pre-clustered Cells Spheroid
?

Days Post Replating

P
er

ce
nt

 S
ph

er
oi

d 
R

em
ai

ni
ng

 (%
)

100 
Pa 

3000 Pa STIFFEN

200 μm
100 Pa

3000 Pa 
100->3000 Pa

100 Pa

3000 Pa 
100->3000 Pa

Fig. 4. Ability of MECs to respond to stiffness-mediated changes is size in-
dependent. (A) Schematic shows how aggrewell plates were used to pre-
cluster cells before seeding onto 100 and 3,000 Pa substrates to investigate
the dependence on spheroid size or maturity. (B and D) Spheroids made with
250 and 500 cells, respectively, were seeded onto 100 and 3,000 Pa sub-
strates, and selected 100 Pa hydrogels were stiffened at day 2. Images show
resulting morphology at indicated days. White arrowheads denote the
spheroids remaining on substrates 5 d after plating. (C and E) The percent
spheroids remaining are shown as a function of days after replating with
the day of stiffening indicated for 250 and 500 cells per spheroid, re-
spectively. *P < 0.05 for Tukey’s post hoc analysis versus other conditions (n =
2 biological replicates containing 33–67 spheroids or EMT cluster per con-
dition for each time point).

3504 | www.pnas.org/cgi/doi/10.1073/pnas.1814204116 Ondeck et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814204116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1814204116


www.manaraa.com

found that regardless of input MEC type (spherical or spread),
spheroids on compliant MeHA had peripheral E-cadherin lo-
calization and typically exhibited hollow centers (SI Appendix,
Figs. S7 and S8, Top). Surprisingly, spread cells on stiff MeHA
had similar peripheral E-cadherin localization although they
lacked polarized orientation (SI Appendix, Figs. S7 and S8,
Bottom); both results were present when MeHA was stiffened (SI
Appendix, Figs. S7 and S8, Middle). Since both cell populations
adapted to their local microenvironment and responded to
stiffening—consistent with the heterogeneous response observed
in Fig. 3—which suggests that cell decisions are not autonomous
and rather involve transient and collective signaling among cells
within the spheroids or spreading MECs.

Heterogeneous Stiffening-Mediated Responses Occur via TGFβ and
YAP Signaling. E-cadherin expression and localization suggests
that paracrine signaling may augment collective behavior. TGFβ
is a common soluble factor that affects EMT (25), so exogenous
TGFβ was added to culture media of spheroids from Fig. 5
plated onto compliant, stiffened, and stiff substrates to determine
to what extent a paracrine signal could influence collective stiff-
ness sensing. In all conditions, the number of spheroids remaining
was greatly reduced, with progressive loss occurring even after
stiffening as well as on compliant substrates absent any stiffness
signal (SI Appendix, Fig. S9). Unlike in the absence of TGFβ on

stiff MeHA where E-cadherin expression was lower but still lo-
calized, we observed complete loss of E-cadherin by day 5 in the
presence of TGFβ on stiff MeHA (SI Appendix, Fig. S10).
Given that exogenous TGFβ induced increased spreading on all

conditions but especially on stiffened MeHA, we next assessed
stiffness-mediated localization of SMAD2/3, a signaling complex
immediately downstream of TGFβ receptor, and Twist1, a basic
helix-loop-helix transcription factor associated with stiffness-
mediated EMT (17, 25). Both SMAD and Twist1 nuclear local-
ized on pathologically stiff (Fig. 6A, filled arrowheads) but not
physiologically compliant matrices (open arrowheads) (Fig. 6 A
and B). For stiffened hydrogels, both spherical and spread cell
subpopulations exhibited heterogeneous distributions of localized
(filled arrowheads) and nonlocalized (open arrowheads) SMAD
and Twist1 (Fig. 6 C and D). When cells on stiff and stiffened
conditions nuclear-localized SMAD, we observed its phosphory-
lation (SI Appendix, Fig. S11), indicating a transcriptionally active
and stiffness-responsive SMAD complex. To decouple TGFβ
signaling from stiffening-induced responses, 10 μMGalunisertib, a
TGFβ receptor inhibitor, was added to culture media of spheroids
on compliant substrates that were subsequently stiffened. Al-
though inhibition prevented SMAD2/3 nuclear localization (SI
Appendix, Fig. S12 A and B), a subset of cells still left the spher-
oids, spread, and became motile (SI Appendix, Fig. S12C). How-
ever, this population was significantly smaller and less migratory
for Galunisertib-treated cells (SI Appendix, Fig. S12 D and E).
These data suggest that stiffening on MeHA substrates induces a
collective paracrine cell response via TGFβ signaling in concert
with other mechanosensitive pathways.
To determine the underlying mechanism for non-SMAD/Twist

spread cells when exposed to dynamic matrix stiffness, we
assessed the localization and activity of the mechanosensitive
transcription activator Yes-associated protein 1 (YAP) (30)
which has been recently implicated in several metastatic cascades
(24, 31). As with Twist1, YAP nuclear localization was observed
on stiff hydrogels but not compliant (Fig. 7A, Bottom). However,
on stiffened hydrogels, 29% of cells had nuclear-localized YAP
but not SMAD (Fig. 7 C and D); conversely, only 8% of cells
were Twist1 but not SMAD2/3 positive (Fig. 6D). Furthermore,
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TGFβ receptor inhibition resulted in clear stratification of the
spherical and spread, motile subpopulations into YAP nonlocalized
and YAP localized groups, respectively (SI Appendix, Fig. S13 A and
B), suggesting a role for YAP in initiating non-TGFβ–mediated
spreading. To understand the role of YAP activity in the spread
cell phenotype, we inhibited its activity with Verteporfin, a small
molecule that reduces endogenous YAP expression and prevents
nuclear activation (32). While Verteporfin reduced YAP nuclear
expression, it did not inhibit EMT-like morphological changes on stiff
hydrogels (SI Appendix, Fig. S14). Interestingly, YAP inhibition on
stiffened gels resulted in a significant reduction of migration similar to
TGFβ receptor inhibition (SI Appendix, Fig. S15). However, while
YAP or TGFβ receptor inhibition alone resulted in significantly fewer
spread and motile cells per spheroid, dual inhibition provided the
greatest overall reduction in the total number of spread, motile cells
(Fig. 8 A and B). Together these data suggest that collective signaling
throughout the spheroid may be sensed through a combination of
both paracrine signaling via TGF-β/SMAD and mechanical signaling
via YAP localization, and that when jointly inhibited, spheroids
composed of MECs give rise to significantly fewer cells capable of
spreading and migrating into the surrounding stroma (Fig. 8C).

Discussion
MeHA-based hydrogels recapitulate mammary morphogenesis
in vitro as classic, static biomaterial systems do (16, 17), but its
ability to be dynamically stiffened to mimic in vivo pathogenesis
provides a tool to elucidate events and signaling not otherwise
observable under static conditions, e.g., dual TGF-β/SMAD and
YAP collective signaling versus that previously observed with
Twist and integrins. Here, we show that preculture on compliant
substrates resulted in a population of spheroids that were par-
tially resistant to stiffness-mediated spreading. MEC response
depended on not only the magnitude of dynamic stiffening, but
also the timing of substrate stiffening. We also demonstrated that
the MECs did not exhibit memory-like behavior but rather that
stiffness-dependent MEC responses at the local cell level were
modulated by TGFβ and YAP signaling; augmenting or inhibiting
this signal induced collective EMT or caused stiffness-sensitive

cells to respond and migrate individually, respectively. These re-
sults implicate a more complex interplay of paracrine and time-
dependent stiffness-mediated cellular changes leading to EMT
than suggested by previous static models (16, 17) but in line with
in vivo systems (9, 14, 33). Similar complexities have been ob-
served in the context of other matrix properties as well as more
complex mechanical behaviors, i.e., stress relaxation (34). Thus,
our data and the field suggest that a broader biomaterials explo-
ration is required; for example, how does mechanical signaling
dynamically change in conjunction with topographic (35), adhe-
sive (36), or porosity (37) changes? Even beyond MECs, dynamic
stiffening may control cell fate, e.g., cardiomyocyte differentiation,
by turning on and off mechanically sensitive pathways over time
(38). Clearly this phenomenon of dynamic biomaterial property
regulation of cell fate—from stem cells to cancer—warrants in-
creasing attention from the biomedical engineering community.

Methods
MeHA Hydrogel Formulation. Twelve-millimeter glass coverslips were cleaned
via sonication in 70% EtOH for 10 min followed by DI H2O for 10 min.
Coverslips were dried and treated with 0.1 mg/mL poly-D-lysine (70–150 kDa,
P6407; Sigma-Aldrich) for 5 min at room temperature. The poly-D-lysine was
then aspirated and the coverslip rinsed with DI H2O and allowed to dry for
2 h before casting gels.

MeHA (1% wt/vol) was dissolved in 0.2 M Triethanolamine (catalog no.
T58300; Sigma-Aldrich) and PBS solution. Irgacure 2959 (catalog no. 410896;
Sigma-Aldrich) was dissolved at 1% wt/vol in ethanol and then diluted to
0.01% wt/vol in the MeHA solution. Fifteen microliters of the hydrogel so-
lution was sandwiched between a poly-D-lysine–treated glass coverslip to
permit hydrogel binding and a nonadherent dichlorodimethylsilane (catalog
no. AC11331; Acros Organics)-activated glass slide to achieve easy detach-
ment and photopolymerized using a transilluminator (4 mW/cm2 at 350 nm
wavelength; UVP). Initial polymerization created hydrogels of ∼100–200
Pascal. Subsequent polymerization to stiffen the hydrogel depended on
exposure time but ranged from 90 to 150 s, depending on the desired final
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modulus using 1% wt/vol Irgacure (26). Protein for cell attachment was
added by mixing 20 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(catalog no. c1100; ProteoChem), 50 mM N-hydroxysuccinimide (catalog no.
A10312; Alfa Aesar), and 150 μg/mL type I rat tail collagen (catalog no.
354236; Corning) in PBS. The collagen–cross-linker solution was added to
hydrogels and incubated overnight at 37 °C.

Atomic Force Microscopy and Force Spectroscopy. Hydrogel stiffness was de-
termined by atomic force microscopy (MFP-3D Bio; Asylum Research) with a
silicon nitride cantilever (catalog no. PNP-TR; NanoAndMore USA Corporation).
Materials were indented at 2 μm/s or∼50 nN/s. Tip deflections were converted to
indentation force for all samples using their respective tip spring constants and
Hooke’s Law. All AFM data were analyzed using custom-written code in Igor Pro
(Wavemetrics) to determine Young’s Modulus as previously described based on
a Hertz model (39). Note that code is available at ecm.ucsd.edu/AFM.html.
Protein tethering quantification by force spectroscopy was analyzed as de-
scribed (27). Cantilevers were functionalized with an anti-collagen type I anti-
body (catalog no. C2456; Sigma) or avidin (catalog no. PRO-500; Prospec). Briefly,
cantilevers were cleaned with chloroform and immersed in ethanolamine-HCl in
dimethyl sulfoxide. Tips were incubated in bis(sulphosuccinimidyl)suberate
(catalog no. 21580; Fisher), rinsed, and then immersed either in an antibody or
avidin solution to cross-link the protein to the tip. Force curves were taken in a
regular 10 × 10 array of points spaced ∼10 μm apart. To promote binding of the
antibody to collagen or avidin to biotin, a dwell time of 1 s was added between
approach and retraction cycles. Curves were converted to force versus tip posi-
tion and then analyzed for rupture events using a previously described algo-
rithm; rupture events were then determined.

MCF10A Assays. MCF10A cells were seeded at 104/cm2 onto MeHA hydrogels.
Hydrogels were stiffened on days 2, 4, 6, 8, and 10 after seeding. Unseeded

control hydrogels were tested concurrently with the AFM to determine their
Young’s modulus to ensure repeatable stiffening. Cell morphology was
characterized by determining the percent spheroids remaining after stiffen-
ing up to 5 d after the stiffening event. For Figs. 4 and 5 and SI Appendix, Figs.
S5 and S7–S15, compliant and stiff MeHA hydrogels were seeded with a
MCF10A preformed spheroids at 250 or 500 cells per spheroid as indicated or,
if not, at 250 cells per spheroid. After 2 d of culture, a subset of the compliant
hydrogels was subjected to stiffening. All samples with and without Irgacure
were subjected to the same UV exposure. After stiffening, the hydrogels were
rinsed with 1× PBS and placed back into assay media. Morphology of the cells
was observed daily, and percent spheroids remaining was determined.

Mammary spheroids were separated from spread cells using an EDTA rinse
for replating onto compliant or stiff substrates to perform a secondary screen.
The spread cells were removed using trypsin and seeded onto compliant and
stiff substrates for an additional secondary screen. In all cases, the cells were
cultured on the substrates for 2 d before the stiffening event and the percent
remaining spheroids was determined.
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